Facebook SDK

Faculty                        : Mathematics and Natural Sciences
Study Program           : Mathematics Education
Course & Code           : Mathematical Statistics, SMA 328
Credit Hours               : Theory 2 credit, Practice 1 credit
Semester                     : V
Prerequisites & Code : Probability Theory, MAA 318
Lecturer                      : Rosita Kusumawati, M.Sc.
I.    COURSE DESCRIPTION
The course is more focused on probability concepts than statistical mathematics. The materials of  probability  theory  are  combinatorial  methods,  probability,  random  variables  and  their distributions,  joint  distributions,  properties  of  random  variables,  and  functions  of  random variables.


II.   BASED COMPETENCY
The students able to use probability and probability distribution for solving a real problem and mathematics problem which is need the calculation of probability, prove the theorems which related to probability, and find a relationship between distributions, and determine expected value of random variables.

III. ACTIVITIES PLAN
Meeting
Based Competency
Subject Matter
Activities
References




1-3
To understand CDF
technique, Transformation methods and To gain the ability to compute the CDF of a new variable
CDF technique, Transformation
methods
Discussion
& Exercises
A: 31-39
B: 1-16
C: 1-113



4-6
To understand sums of
random variables, order
Statistics
Sums of random variables, Order
Statistics
Discussion
& Exercises
A: 1-30
B: 22-102
C: 1-113


7-10
To understand the concept
of law large number, central limit theorem and its assumptions
Sequences of random variables,
The central limit theorem, Approximations for the binomial distribution
Discussion
& Exercises
A: 53-83
B: 117-134

11-15
To recognize and learn
properties of stochastic convergence
Asymptotic normal distributions,
Properties of stochastic convergence
Discussion
& Exercises
A: 91-124
B: 134-224
16

Mid Test




17-21
To solve sampling
distributions
Sampling distributions, Large-
sample properties,
Discussion
& Exercises
A: 137-160
B: 232-286

22-26
To explain methods of
estimation
Methods of estimation, Criteria for
evaluating estimators
Discussion
& Exercises
A: 171-188
B: 297-373

27-32
To gain the ability to use to
Bayes and minimax estimation methods
Bayes and minimax estimators
Discussion
& Exercises
A: 193-214

IV. REFERENCES Compulsory textbooks  :
A.  Bain, Lee J. & Engelhardt, Max. 1992.  Introduction to Probability and Mathematical
Statistics. Belmont: Duxbury Press.
B.  Ross, Sheldon M. 2010. A First Course in Probability. New Jersey: Prentice-Hall.

Suggested reference books         :
C.  Rice, John A., 1995. Mathematical Statistics and Data Analysis. Belmont: Duxbury Press.

V.   EVALUATION
No.
Components
Weight (%)
1.
Participations
5
2.
Assigment
10
3.
Quiz
15
4.
Mid Test
30
6.
Final Test
40
Total
100

Yogyakarta, September 2012
Verified by                                                                                         Lecturer
Head of Department


Dr. Hartono                                                                                         Rosita Kusumawati, M.Sc. 
NIP. 19620329 198702 1 002                                                             NIP. 19800707 200501 2 001

Post a Comment

Berkomentar sesuai dengan judul blog ini yah, berbagi ilmu, berbagi kebaikan, kunjungi juga otoriv tempat jual aksesoris motor dan mobil lengkap

Lebih baru Lebih lama