1. Let G with a binary operation * be a group. Now, choose one element g ∈ G and define new
binary operation # in G as follow : a # b = a * g * b.
Check whether ( G, #) form a group or not.
2. Determine all subgroup of![](https://blogger.googleusercontent.com/img/b/R29vZ2xl/AVvXsEhRx5Oy6H7hrMPqv8QiIsbg1wc6xuYi6BExUB0GeUapCNAGEBXJgHRpuneO8jyK8VLeNkxe4jDCXjPJHcR_kFQWYiGlEngfq0pN5i0SQ8wl-FTTgxjOfsne360Z3CpQ8FXpChQ1oYx0tLk/s1600/z.jpg)
3. Find the number of generator of cyclic group![](https://blogger.googleusercontent.com/img/b/R29vZ2xl/AVvXsEhBZsvdBjDDlIOzG0fo6clfos2i4AaPeRlvHlr9KHlupJZoHyjajSWqLIQWDPotPUDAA9u-0yVn_MGvFfKUzypZZhNuOgZg_5sg_lwBn4Jlpy89ZYHyTtSGsl57sZF_0pgrC8ecNJtMdlk/s400/z.jpg)
4. Let G be a group and g ∈ G. A function f : G → G is defined by
that f is an automorphism.
binary operation # in G as follow : a # b = a * g * b.
Check whether ( G, #) form a group or not.
2. Determine all subgroup of
![](https://blogger.googleusercontent.com/img/b/R29vZ2xl/AVvXsEhRx5Oy6H7hrMPqv8QiIsbg1wc6xuYi6BExUB0GeUapCNAGEBXJgHRpuneO8jyK8VLeNkxe4jDCXjPJHcR_kFQWYiGlEngfq0pN5i0SQ8wl-FTTgxjOfsne360Z3CpQ8FXpChQ1oYx0tLk/s1600/z.jpg)
3. Find the number of generator of cyclic group
![](https://blogger.googleusercontent.com/img/b/R29vZ2xl/AVvXsEhBZsvdBjDDlIOzG0fo6clfos2i4AaPeRlvHlr9KHlupJZoHyjajSWqLIQWDPotPUDAA9u-0yVn_MGvFfKUzypZZhNuOgZg_5sg_lwBn4Jlpy89ZYHyTtSGsl57sZF_0pgrC8ecNJtMdlk/s400/z.jpg)
4. Let G be a group and g ∈ G. A function f : G → G is defined by
![](https://blogger.googleusercontent.com/img/b/R29vZ2xl/AVvXsEguDorhxBSqDiCZhIbJDK4tm4aincm_jMYjlTGJwPm7IEy5pS0NTEZq5L9D9npyfnaHDQa-4ygWTlCPzWqR80CflURkSJur74cACOcFdpGu5hFsuYyY6jHmd_XfVA1m0diFhpWOgaeHEM4/s400/z.jpg)
Posting Komentar
Berkomentar sesuai dengan judul blog ini yah, berbagi ilmu, berbagi kebaikan, kunjungi juga otoriv tempat jual aksesoris motor dan mobil lengkap