1. Let G with a binary operation * be a group. Now, choose one element g ∈ G and define new
binary operation # in G as follow : a # b = a * g * b.
Check whether ( G, #) form a group or not.
2. Determine all subgroup of
3. Find the number of generator of cyclic group
4. Let G be a group and g ∈ G. A function f : G → G is defined by that f is an automorphism.
binary operation # in G as follow : a # b = a * g * b.
Check whether ( G, #) form a group or not.
2. Determine all subgroup of
3. Find the number of generator of cyclic group
4. Let G be a group and g ∈ G. A function f : G → G is defined by that f is an automorphism.
Posting Komentar
Berkomentar sesuai dengan judul blog ini yah, berbagi ilmu, berbagi kebaikan, kunjungi juga otoriv tempat jual aksesoris motor dan mobil lengkap